1952. Three Divisors Easy

@problem@discussion
#Math



1/**
2 * [1952] Three Divisors
3 *
4 * Given an integer n, return true if n has exactly three positive divisors. Otherwise, return false.
5 * An integer m is a divisor of n if there exists an integer k such that n = k * m.
6 *  
7 * Example 1:
8 * 
9 * Input: n = 2
10 * Output: false
11 * Explantion: 2 has only two divisors: 1 and 2.
12 * 
13 * Example 2:
14 * 
15 * Input: n = 4
16 * Output: true
17 * Explantion: 4 has three divisors: 1, 2, and 4.
18 * 
19 *  
20 * Constraints:
21 * 
22 * 	1 <= n <= 10^4
23 * 
24 */
25pub struct Solution {}
26
27// problem: https://leetcode.com/problems/three-divisors/
28// discuss: https://leetcode.com/problems/three-divisors/discuss/?currentPage=1&orderBy=most_votes&query=
29
30// submission codes start here
31
32impl Solution {
33    pub fn is_three(n: i32) -> bool {
34        false
35    }
36}
37
38// submission codes end
39
40#[cfg(test)]
41mod tests {
42    use super::*;
43
44    #[test]
45    fn test_1952() {
46    }
47}
48


Back
© 2025 bowen.ge All Rights Reserved.